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Computational fluid dynamics using composite overlapping grids plays an im-
portant role in today’s fluid mechanics with complex flows. The key point in the
overlapping grid method is how to ensure conservation for shock waves. This was
first studied by M. Berger under the framework of weak solutions for vanishing mesh
size, leading to the well-known flux interpolation interface conditi8iAM J. Nu-
mer. Anal.24, 967(1987)). The present author used the Rankine—Hugoniot relation
to directly analyze the transmission of a shock across the interface and showed that,
for the scalar Burgers equation, a nonconservative treatment leads to correct transmi-
ssion of shocks even for finite mesh sizes if the interior difference scheme contains
enough dissipation, and that shock penetration trouble only occurs for very slowly
moving shock wavesIAM J. Sci. CompuR0, 1850 (1999)). This is reconsidered
here for the system of Euler equations in gas dynamics. Numerical experiments show
that for weakly dissipative schemes, slowly moving shock waves fail to transmit the
nonconservative interface by producing finally a nonphysical, two-shocked steady-
state solution. By using the dynamics of a very slowly moving shock, we will show
that two-shocked steady-state solutions are avoided if the interior difference scheme
is no less dissipative than the standard Roe scheme even though a nonconservative
interface treatment is used.g 2001 Academic Press

Key Wordsslowly moving shock; shock/interface transmission; two-shocked so-
lution; nonconservative grid interface.

1. INTRODUCTION

Flows around multielement bodies can be efficiently analyzed by computational fl
dynamics using composite overlapping grids. If a moving shock fails to transmit the g
interface, then the solution has no meaning. A correct prediction of the shock speet
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position is very important since it determines the lift force and sometimes the main p
of drag force for transonic and supersonic airfoils. The possible trouble of shock/interf
transmission can be understood from a mechanical point of view. In fact, a moving she
itself has some energy. When the shock impinges the grid interface, some energy wi
get lost due to the interface. Thus it can be readily imagined that a very slowly movi
shock would possibly have some difficulty in transmitting the interface since the ener
involved in the shock should be proportional to the shock speed. The possible blocking of
shock wave can be also understood in a mathematical way, by noting that the discrete E
equations in gas dynamics on overlapping grids are equivalent to the so-called modi
equations [11], which are just the Euler equations plus some source terms. The source t
become important at the grid interfaces [24]. Generally, the source terms can be divi
into three parts:

(a) Zeroth-order terms: The case of a hyperbolic system with moving source term |
been analyzed by Lin who shows that nonlinear resonance may occur in such a case
Such zeroth-order terms may be a cause of shock blocking.

(b) Dissipative terms (with space derivatives of even order): The role of dissipationis si
ilar to the viscous force of a viscous fluid; namely, it just smooths out the sharp shock wa

(c) Dispersive terms (with space derivatives of odd order): The interaction betwee
shock and a dispersive wave would lead to the change of shock speeds [4]. This is anc
cause of shock blocking.

The difficulty of slowly moving shock waves exists also for numerical treatments witho
interfaces [2, 3, 12, 15, 18, 20, 21, 27, 39].

The only difference between the overlapping grid method and a single domain treatrr
is that the former requires interpolation at the grid interfaces. Conventional interpolati
or normal interpolation, is based on the state variables. Since the interpolation is perfort
inside the grid, the local conservation of the difference approximation is altered. Wh
the solution is smooth or just contains contact discontinuities, the loss of conservatiol
unimportant. However, when shock waves interact with the grid interface, conservat
would be required according to the general theory of weak solution. Based on ear
numerical remarks on the importance of conservation, Berger [5] constructed interf:
treatment based on flux interpolation which ensures conservation in the weak sense.
is a very important achievement followed by many subsequent studies [7, 24, 25, 31, .
The normal interpolation, which does not fulfill the conservation requirement, is simpl
and more stable than the flux interpolation method. But is it necessary to have conserve
treatment for conservative solutions?

For multimaterial interfaces, Karni [13] was able to obtain conservative results wi
nonconservative treatment. The method proposed by Karni [13] is nonconservative on
entire domain and could not handle strong shocks as was pointed out by Abgrall |
This was remedied in [9, 14] in which the methods are nonconservative only on a lov
dimensional set near the interface. Tang and Zhou [31] examined the conservation err
nonconservative overlapping grid treatment still under the framework of weak solutions
vanishing mesh size.

Any real computation is done on a grid with finite mesh sizes. Thus it appears mc
useful to examine conservation on a grid with finite mesh sizes. This is the appro:
adopted by the present author [36]. Since conservation is important only for genuin
nonlinear discontinuous waves, the real key point of conservation is whether a mov
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shock can transmit the overlapping grid interface without difficulty. Let us state the argum
more clearly. Imagine two partially overlapping grids in 1D, with possibly different mes
spacing. Interpolation procedures are needed in order to orchestrate the solutions on
sides. A shock wave approaching the overlapping region needs to continue its mo
from one grid into the next, ideally, without noticing the grid change. Less ideally, t
interpolation procedures may be such that will cause a delay in shock transmission, wi
is still OK if the error (delay) goes to zero with mesh refinement. What is not OK is

the shock gets stuck at the edge of the grid interface and stays there forever, thus cat
nonconvergence of the solution. Nonconservative interpolation procedures may trigger ¢
behavior. By considering the direct interaction between a right-going shock of the Burg
equation and an overlapping grid interface, the present author has obtained the follov
results:

(a) ifthe interface treatmentis defined by Berger’s flux interpolation, then the shock ¢
transmit the grid interface without delay. This had already been proved by Berger [5] us
the argument of convergence to weak solutions for vanishing mesh size. But the analys
[36] is for finite mesh size and this conclusion remains valid for a system of equations.

(b) if the physical shock speed normalized by the wave speed in the left of the sh
is larger thansyin = % — ? ~ 0.146 and smaller thagnax = % + JTE ~ 0.854, then the
numerical shock can transmit the grid interface even with nonconservative nhormal in
polation. This is just a sufficient condition that was derived rigorously by analysis. Fol
specific scheme, the lower bousgi, can be reduced, and the upper bowgrgk can be
increased. There is no difficulty in understanding the lower bound as already explaine
the Introduction. The upper bound only possibly exists for numerical schemes with stre
numerical oscillations near shock waves. It is very rare to use a strongly oscillatory sche
to compute shock flows in practice. Hence only slowly moving shock waves could he
trouble. For slowly moving shock waves, it is necessary that one eigenvalue changes
across the shock layer (e.g., [15], see also Sect. 3.4 of [36], where it was shown that f
shock speed smaller thag;,, one eigenvalue changes sign).

(c) if the numerical viscosity of the interior difference equations, just at the interfas
point and at the moment that the shock coincides with the interface, is no smaller tl
that of the standard first-order Roe scheme, then the numerical shock can transmit the
interface even with nonconservative normal interpolations and for all shock speeds.

(d) the numerical shock fails to transmit the grid interface only if the shock speed is ve
slow, the interpolation is nonconservative, and the interior difference scheme does not |
enough dissipation.

The sufficient conditions a—c are obtained theoretically, and the necessary condition
based on numerical experiments. These results show that the range in which an overlay
grid method fails to work is very narrow. In fact, modern schemes for shock flow computati
have enough numerical dissipation inside the shock so that sufficient condition c is satist
However, the above results are basically based on the scalar Burgers equation, though
numerical experiments given in [36] seem to justify that they remain true even for the Eu
equations in gas dynamics.

The purpose of this study is to extend part of the scalar results to the system of E
equations in gas dynamics. For slowly moving shock waves, we observe numerically tha
shock fails to transmit the interface by producing a nonphysical, two-shocked steady sta
the numerical scheme is weakly dissipative and if the interface treatment is nonconserva
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However, if the interior difference equations contain enough numerical dissipation, the tv
shocked steady-state solutions are avoided even if we use nonconservative normal inte
interpolation. The theoretical proof relies heavily on the dynamics of a slowly moving sho
wave. We are actually unable to do so for a general hyperbolic system of equations.

This paper will be organized as follows.

In Section 2, the basic condition of shock/interface transmission is derived for a gene
hyperbolic system approximated by conservative schemes and for an interface cond
defined by nonconservative normal interpolation. Itis the condition of a two-shocked ste:
state that is stated. Actually we find that if the condition of a two-shocked solution does |
hold, then the shock can transmit the grid interface.

In Section 3 we prove that a slowly moving shock for the Euler equations in gas dynam
cannot stick to the interface in the form of two-shocked steady state, if the interior differer
contains no less dissipation than the standard Roe scheme, just at the point of shock/inte
interaction.

In Section 4 we provide some discussion and numerical experiments. Concluding rem:
will be given in Section 5.

2. BASIC CONDITION OF SHOCK/INTERFACE TRANSMISSION

2.1. Difference Approximations on Overlapping Grids

Consider the following hyperbolic system of conservation laws
Wi+ Hy=0 teR", xeR, (1)

where the unknowhV is called the state variable or conservative variable,land H (W)
is called the flux function.

Similarly asin[36], the computational domain is splitinto two subdomBins= {x: X <
b}, D, = {x; —a < x} with an overlapping lengttb + a. The boundariex = —a and
x = b of the overlap are called interfaces. The overlaj®, b) containsp points in the
right subdomain and points in the left subdomain.

The numerical solutions D, and D, are denoted aBl” ~ W(x(”) nét) with j <0
andv!" ~W(x", nst)with j >0, where<(“) b+ (j —O. 5)8xu, x\" =—a+(j +0.5)8x,
are ceII centers, anit, §x,, andsx, deflne respectively the t|me step, the mesh sizZ@ jn
and the mesh size iD,. The ratiossy, = §t/8xy, o, = 8t/8X%, are assumed to be constant.
In each subdomain, the system (1) is approximated by a multileve{land + 1)-point
difference scheme in conservation form:

AV)' = _UU(an+1/2 - an—1/2)’ AV)' = _GV(G?+1/2 - GT—1/2>~ (2)

HereAU[' = Ul' — Ul'and AV} = V' — V" denote the time increments, afg, ; , and
G 1/, are numerical fluxes consistent with the exact flux functibiw). For a two-level
(I +r + 1)-point scheme, we have

n . cn n n n n+1 n+1 n+1,
Fj+1/2 - Fj+1/2(UJ—I+1’ Uj—l+2’ UJ-H’ UJ I+1> Ul —l+25 - U1+r ’ GU)

n _n n n n n+1 n+1 n+1,
Gj+l/2 - Gj+l/2(vjfl+1’ ijl+27 VJ+I” Vj 1+1° Vj 142> - - Vj+r ’ v)’
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FIG. 1. Overlapping grid for normal interpolation.

with

F12(U.U,...,U;U U, ..., U; o) = H(U)
GlL1 (Vo V.., ViV V L Vigy) = H(V).

Itis well known [17] that the solution of a conservative scheme converges to a weak solu
of the exact equation when it converges.

There are two classes of interface condition: the nonconservative normal interpola
and the conservative flux interpolation. For schemes with more than three points in sp
the same interface condition can be applied to all interface p@igi®, 1,...,r — 1 for
the left subdomain anfl= 0, —1, ..., —| + 1 for the right subdomain. This will be called
translatory interface condition

Let | (X, ¢) be an interpolation ta using discrete values gf nearx.

Referring to Fig. 1, the normal interpolation, which is frequently used in practice, is bas
on the unknown#){' andV}" and has the general form

1-—
ugzl(b— 2“axu;V“), £=01,...,r—1 3)

w41

VS:I(—a+ 8XU;U“), w=0-1,...,—I +1 4)
See [6, 25] for more detalils.

In the conservative flux interpolation method [5], the valugsandV;' are calculated as
in the interior points, the missed numerical fluXgs, andG", , are interpolated from the
interior points (see Fig. 2):

F{]/Z =1 (ba Gn)7 GEI/Z = (—a; Fn) (5)

The interpolation coefficient is similarly defined. When computing the numerical fluxes
for points near the interface, we still require the valugsvith n = 1,2, ...,r — 1 andvj,

Dy upy iy oy uf b
' il v 5—1/2 1/2
o g
—a ’Un! o o ; r—t v
0 *1 P p+L D,

FIG. 2. Overlapping grid for flux interpolation.
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with u = -1, -2, ..., —I 4+ 1. This can be defined by just using the normal interpolatior
n 1-p n
U, =1 b—T(qu;V , n=12...,r—-1 (6)
n p+1 n
V,=1{-a+ ;U p=-1,-2,...,—-1+1 @)

The interface conditions (5)—(7) combines the flux interpolation and the normal interpo
tion. Note that in two or three dimensions, it is not enough just to interpolate the fluxes
one wants a conservative scheme. See [5, 7].

There were quite a number of studies with regard to the accuracy [6, 26], stability [
22,24, 25, 29, 32], conservation [5, 7, 25, 33], solution uniqueness [34], and converge
to a steady state [35, 37] of the overlapping grid interface treatment.

2.2. Possible Scenarios of a Right-Going Numerical Shock

For completeness of the presentation, let us first consider the scenario already stat
[36] for a scalar equation. Consider a single right-going shock starting in the left subdom
away from the interface. After the shock inside the left subdomain (Shock L) react
X = —a, another one (Shock R) forms inside the right subdomain due to interpolation
X = —a. Being free of interface before reachirg= b, Shock L moves to the right, while
Shock R may get stuck at= —a or successfully penetrates the interface. If Shock R get
stuck atx = —a, Shock L cannot disappear due to interpolatiow at b. Only inside the
overlap both shocks can exist simultaneously. Ideally, we desire Shock L and Shock F
have the same position, when they are inside the overlap. Practically, we would have
following three scenarios:

Case a (perfect transmission, Fig. 3): Shock R moves at the same speed (within
difference of the order of truncation error) as Shock L. When both shocks arrive at the ri
boundary of the overlap«(= b), shock R will pass freely since it faces no boundary. Whel
shock R moves to the right of the overlap, the solution earb in the right subdomain
becomes smooth and by interpolation shock L disappears.

Case b (delayed transmission, Fig. 4): Shock R gets stuck for a finite time interval
the left boundary of the overlap due to conservation error, while Shock L moves fres
rightward until it reaches the right boundary of the overlap. Shock R starts to move late «
lags a distance with respect to Shock L. When Shock L reaches the right boundary of
overlap, it stays there motionless due to interpolation and disappears after Shock R mi
to the right of the overlap. Thus the right-going shock will finally transmit the overlap b
with a delay with respect to the exact shock.

—_—u - v pE—isd -7 n 1A
. Y3 ] v3 7 3

3

)
Shock 1 Shock RejplegmShock L Shock §
1

- h— = - - baw

Dul_a b D, Du'—a b D, Du‘—a b D,

FIG. 3. Shock through the overlap in case of perfect transmission. Left: shock at the left of the overl:
Middle: shock inside the overlap. Right: shock after transmission.
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FIG. 4. Shock through the overlap in case of delayed transmission. Left: shock at the left of the overl
Middle: shock inside the overlap. Right: shock after transmission.

Case c (no transmission, Fig. 5): Shock R always gets stuck at the left boundary of
overlap due to severe conservation error. When Shock L reaches the right boundar
the overlap, it stays there permanently due to interpolation. This leads to a two-shoc
steady-state solution.

One would also imagine other scenarios. For instance, one would imagine that Sh
L lags behind Shock R. This is in fact impossible since only Shock R faces an interf
before both shocks arrive at=b. A second possibility one would imagine is that for
system of equations only part of the waves get transmitted, part get stuck, and part
reflected. However, since the interpolation normally used is done in the same way for €
component of the state variables, each component should behave similarly so that the
travels in whole and no part of the wave is preferred. As a result, the situation of par
transmission,partial sticking, and partial reflection does not appear to happen.

Perfect transmission is the most desired scenario. To see whether the delayed tran:
sion is acceptable, let us consider the difference approximation for the Euler equation
nondimensional analysis shows that the solution depends only on the Mach ndnainer
the Courant numbeCFL = o max(1), where maxi) denotes the maximum wave speed.
Thus the delay, in terms of number of time iterations, should be only a functioMaind
CFL. The specific form of this function depends on the structure of the numerical appro
mation. Thus the delay in terms of the dimensional time is N§t. By refining the mesh
or equivalently the time stegt(— 0) while keepingCFL fixed as is common in CFD,
the delayT can be made as small as we desire. Thus a delayed transmission is accep
since from the dimensional argument it can be made as small as one desires through
refinement.

Only the case of ho transmission is unacceptable since the solution is even qualitati
altered: an unsteady shock is transformed into a nonphysical steady-state shock.

2.3. Condition for the Existence of Nonphysical, Two-Shocked Steady-State Solution

The two-shocked steady-state solution cannot appear arbitrarily. It must satisfy a cer
number of constraints, calledndition of two-shocked solutiohet us derive the condition
of two-shocked solution.

Shock 1 Shock Ry hock L $hock Ry hock L

D, D, D, D, D,

FIG. 5. Shock through the overlap in case of no transmission. Left: shock at the left of the overlap. Midd
shock inside the overlap. Right: steady-state two-shocked solution after a long time.
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Once a steady-state is reached, we h&alg' = 0 andAV|" = 0. Thus by (2) the numer-
ical fluxes satisfy the following conditions

Fivi2 =F o412 Vj <O
Gjt12 = Goot12 Vj>0.

The solutions at infinity are assumed to be smooth, and by consistent assumption, we m
haveF_. ;12 = HL andG_,.;1/2 = Hg. As aresult, we have the following constraint on

the numerical flux
F_12=H_L
(8)
G1/2 = HR.

Now we want to express the condition (8) in terms of the numerical viscosity of tt
difference equations. Let us just concentratejn, ,.

First consider a scalar equation, it is well known [30] that any multipoint conservati
scheme can be put into a viscous form similar to a three-point scheme. In terms of
numerical fluxG", ; ,, the viscous form for a scalar problem can be written as

1 1
Trvz = 5(H]' + HlL) + 5 Qa2 (V = Vi), 9)

whereQf. , , is the numerical viscosity defined by

o= (Gli1p = 3(H +HL)]/[3(V! = V)], forV # Vi,
J+l/2 <OO, fOI’ V]n = an+l'

The influence of the extra points outside that of a three-point scheme was factored into
numerical viscosityQ' 1 ».

We are wondering if it is possible to define a mat@¥, , , such thatG', , can be
related toQ’j‘ +1/2 Dy (9) in the case of a system.

PropPosITIONL. For the case of multipoint difference approximatidtris always possi-
ble to have a matrix numerical viscosityj‘ﬂq/2 such that9) holds. This numerical viscosity
is uniquely defined for the case of a scalar equateord there is an infinite number of\Q, ,
for the case of a system.

Proof. Let X andY be two independent vectors each withcomponents; then, obvi-
ously, there exists at least omex m matrix M such that the following relation holds

Y =MX.

In fact, the above equation ha® unknowns and onlyn relations. Hence the problem is
underdetermined and has an infinite number of solutions (in the case of a scalar equa
only one solution exists).

Thus by takingY = G}, , — 3(H' + H[, ) andX = (V" — V], }), we conclude that
there always exists some mat @, ; ,(=M) such that (9) holds in the case of a system

with multipoint difference approximation.m

2Here the word “infinity” means sufficiently far away from the interface.
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Remark 2.1. The numerical viscosityQ'j‘H/2 satisfying (9) is nonunique. But in
Section 3 we will construct a unique and more convenient viscosity to proceed with
analysis. See Proposition 2.

For convenience, let us introduce the Roe matrix @311/2 defined as

Hjn+1 - Hjn = 5;+1/2(an+1 — an) if VJ-"Jrl e an
Cit12=C(V) ifV,=V'=V.
In terms of the numerical viscosity, the second condition in (8) can be expressed as

1 1
E(HO + Hy) + §Q1/2(Vo - V1) = Hg. (10)

Now let us consider the constraint due to interpolation. For the two-shocked steady-s
solution, the solution is smooth inside each subdomain. The solution in the left subdon
is close toW, and the solution in the right subdomain is closaNg. Thus, the interface
condition (6)—(7), which is assumed to be at least locally first-order accurate, reduces

Uy

1-—
I(b— 2“5xu;v>=WR+E“ pw=12...r—1 (11)

w

w

1
V, |<—a+“;r SxU;U>=WL+E“ p=-1-2..., -1+1 (12

Here E, and E; are numerical errors due to shock smearing and oscillation. The errc
E, andE;, vanish when the overlap is large enough in comparison with the width of tt
numerical shock. Later on we will assume the overlap to be sufficiently large tdyaxe0
andE;, = 0, so that we have from (12) the following condition

Vo = W,. (13)

Combining (10) and (13), and making use of the relatidps= H (Vo) = H(W_.) = H,,
we have

1 1
§Q1/2(Vo — V1) =(Hr—Hp) + E(HO — Hy),

which, by the Rankine—Hugoniot relation (18) and by the definition of the Roe matrix, ¢
be rewritten as

1 1-—
§Q1/2(V0 — V1) =s(Wr — W) + §C1/2(Vo - V1)

or more conveniently

1 _
> (Quj2 — Cy2) (WL — V1) = S(Wr — W) (14)

in which we have uselly = W, .

Equation (14) is the final form of the condition of two-shocked solution. If the numeric
viscosity Q; 1,2 or the exact shock speads such that (14) cannot hold, then the shock
can transmit the interface.
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3. SHOCK/INTERFACE TRANSMISSION FOR THE EULER EQUATIONS
IN GAS DYNAMICS

3.1. Dynamics of a Slowly Moving Shock

For the Euler equations in gas dynamics, the unkndwmand the flux functionrH =
H (W) in (1) are defined by

p pu
W=|pu|, HW= pu? + P
E P
P pu(E—i—p)

Here p denotes the density denotes the velocitye denotes the total energy, afdis
the pressure. For a perfect gas, the pressure is related to other variables through the
equationP = (y — 1)p(E — %uz), wherey with y > 1 is the ratio between the specific
heats at constant pressure and volume. The corresponding JacobiarGtityix= ¢ Z‘\%")

is given by

0 1 0
C(W) = r3y2 B-yu y-1
(y —Dud— yuE yE 3222 pu

or in terms ofu, ® = E + P/p (total enthalpy) ané = /vy P/p(sound speed)

0 1 0
CW) = r=3y2 B-—yu y-1
(y — Dud — yu® +ua? y@—az—WU2 yu

The eigenvalues of this Jacobian matrix afe= u, A, = u+a, A3 = u — a. Let

u 0 0
A=]0 u+a 0
0 0 u—a

Then the diagonalization matrices©fW) , i.e., the matrices ~* andL which ensure the
relationL~1 C(W)L = A, are given by

1— sy =D —ZA-pu —%(r -1

L= | —u+ 0 -Du® 1+:0-pyu -1 (15)
—U—n(y—Du? 1-2d-yu —2(r-1
1 11 ~33
L= u L1+ 3(1-2) - 19
WP U F U+ @ —UE+ oU— ppa
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Consider a right-going shock with the following initial data
W(x,0) =W_, X < Xo; W(X,0) =WRr, X > Xo a7
which satisfy the Rankine—Hugoniot jump relation
Hr — HL = s'(Wr — WL). (18)

Herexg < —a, s is the shock speed, antdf, = H (W), Hr = H(WR).

We will just consider a right-going shock witfi > 0. The case of a left-going shock
can be analyzed in a similar way and the conclusion remains the same. Besides, we
consider the case witln, > 0.

Now let us state some important properties of the jump in conservative variables. -
details for the derivation of these properties are ignored here and will be published in |
where we will also treat the problem of momentum spike and post-shock oscillation.

Let ML be the relative Mach number in the left-hand side of the shock defined by

HereM = u_/, /y% is the Mach number in the left-hand side of the shock.

For convenience, let us takg = P. = 1 andu. = ,/y M. This is not a restriction by
nondimensional treatment. The shock speed relative to the soundapeeg/ yB = JY
. i , . . pL
is defined bys = a% Only the relative shock speed will be used.

For a prescribed shock spegdhe jump of conservative variables in termshdfands
is found to be

(y +Dy(M —s)?

oy = - 19
PR = G —Dy(M =92+ 2y (19)
(y +Dy(M —s)?
— = Q- M 2
PRUR — oL UL 7 —Dy(M—92+2y NS (20)
Dy (M —s)? 12 — 1)y M2
pRER — pLEL = (y +Dy( S) w12+ (y — Dy _ 21)

(y —Dy(M —9)2+2y 2 (y -1
Here

y —Dy(M —s)2+2y
y+1D/y(M—y)
1 2y(M —s)?2  y-—1
V—l( y+1  y+1

Q(M,s):ﬁs+(

U(M,s) =

1 <y—1>y<M—s>2+2y)2
+ - Jrs+
) 2(W r+DH/¥(M =5
For slowly moving shock waves, the jumps in conservative variables given by (19)—(:
have the following asymptotic behavior

M2 -1 y+1

_— — s+ O(s? 22
yM2 - M2 42 (yM2 — M2 + 2)2 +06) (22)

PR— pL =2
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M2 -1
PRUR — pLUL = zﬁms—i- 0(s?) (23)
A 2MB 5
PRER_PLELz_yMZ_M2+2+(yMz—M2+2)ZS+O(S). (24)
Here
A M-DM+D[@y* -4y —2)+ (=4 + v = )M
ry-Dr+1
B_ (—4y +6y% —2) + (4y® — 16y2 — 4y)M? + (=5y° + y + y* + 3y2)M*
y-Dr+D )

Furthermore, the following inequalities hold

PrR—pL >0
PRUR —pLUL — 40, co>M=>1, s— +0 (25)
PRER— pLEL >0

pr—pL <0

prRUR — pLUL — =0, —/5% > M > -1 s— +0. (26)
PRER—pLEL <0

It can be shown that for a right-going shock, the entropy condition in terms of the relati
shock speed is given by

1
O<s<max(M—1,00 orM + 17—<3<M+1 27)
\ 2y

and a physical shock can move to the right onliylif> —1.

By (27), it is clear that the only two possible cases to have a slowly and right movil
entropy shock are: (dyl > 1, (b))—1 < M < — VZ—;l

For M > 1 ands — +0, the flow is supersonic (with small density) in the left and
subsonic (with large density) in the right. Hence the conditign- o > 0 (see Eq. (25))
holds.

For — ;/ >~ > M > —1lands — +0, the flow is supersonic (with small density) in the
right and subsonic (with large density) in the left. Hence the condjtior- o, < O (see
Eq. (26)) holds.

3.2. Sufficient Condition to Avoid Nonphysical Two-Shocked Solution

For the Euler equations in gas dynamics, the exact form of the Roe maf;ix—%t is
given by [28]
0 1 0
C_j+1/2= 362 B-yu y—1],

(y — DU® — yUO + ua? 7/(5—52—%62 yu



SHOCK/INTERFACE TRANSMISSION 591
with

0= e —

G Wtbul, o ©]+DOf, ()/—1)(
1+D 1+D

172). (28)

I\)ll—‘

HereD = ”/')“

Following Proposition 1, the numerical viscosi®}, ; , is not unique for the case of a
system. We shall consider schemes which are as or more dissipative than the Roe sct
It is thus desirable to use @7, ; , which has the same eigenvectors as the Roe schen
This is possible (as will be proved in the next proposition) since there is an infinite numl
of numerical viscosityQ, ; , satisfying (9). For convenience, let us def|®+1/2| by

’51+1/2| = Ej+l/2|Xj+l/2|L_j_i1/2’

with |A| = diag(|U], |0+ a], |U — a]) and the diagonalization matrices are still given by
(15) and (16) with their arguments © anda replaced by the Roe averages®, anda
defined in (28).

ProPOSITION2. There is a diagonal matnx\ﬁ‘fl/z such that the numerical viscosity

Q',.1/, satisfies boti{9) and the following relation

Qi1 = |CJ+1/2| + LJ+1/2A]+1/2LJ+1/2 (29)

Proof. Inserting (29) into (9) yields

1
G?+1/2 = E(H + H1+1) (|CJ+1/2| + LJ+1/2A]+1/2LJ+1/2) (Vn - an+1)»

which can also be written as

A(+1/2L1+1/2(Vn an+1) = I?j_il/z [ZG?+1/2 - (H]n + Hjn+1) - |6j+1/2| (an - an+1)]
or

q @ (p(l)

q@p@ | = L112[267 12 — (H] + HIb1) = [Ciraga| (V] = VL)), (30)
4@

whereq® is thekth component of the column vectar- Thy(V = V) ande® is the
kth diagonal element ok P, ,.

SinceG" 45, 3(H + H, 1), ICjsa/2l, Ljr1/2, '—1+1/2 and(V'— VI",,) are all known
functions for a given scheme, Eq. (30) defines three relat|ons for the three unknowns ir

diagonal matrixA ), ,. Hence there is always a matix; , satisfying (9) and (29).m

Remark 3.1. If one just looks at (29), then one would get an impression that (29) wou
not be true sinc®] ; , hasm x melements while\ p)l/z only hasm elements. This is be-
cause combining (9) and (29) yielaerelations for then unknowns mA“”l/2 Sincethereis
an infinite number oR7 ., , satisfying (9), itis always possible to hav€¥., , , satisfying
both (9) and (29), and particularly having the same eigenvectors as the Roe matrix.
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Remark 3.2. If we further assume that the two pointsand j + 1 cross a very slowly
right-moving shock, therqvjn — an+1) defines the jump across the shock. Hence we ca
use (15) and (22)—(24) to compute the expression for g&&hConsider for instancg®.

A direct calculation similar to the proof for Proposition 3 shows that

(31 (33
q® = |i/2>0<1) + |<1/2)O<3) +0(s)>0

for smalls. HerelY), is the element of ;5 in row m and in columnn ando™® is the
kth element of V" — V',;). Similarly, we haveg® # 0 andq® # 0. Henceq® + 0O for
k = 1, 2,3, and the matrix\ {7, , is unique.

Remark 3.3. The matrixLj,12A{; ,L 1, represents a difference of the numerical
viscosity between the considered numerical scheme and the standard first-order acc
Roe scheme Wit , = |Cj 12| or A% , = 0.

DerINITION. A numerical scheme is said to be no less dissipative than the standard F
scheme if none of the diagonal elements\gf’; , is negative.

Now we are able to prove the main result of this paper. In order to avoid complicatic
we make the restriction,. > 0 in the statement of this result. In the next section we will
simply explain that this condition can be removed.

PropPOSITION3. For the Euler equations in gas dynamjdsjust at the moment that
the right-going shock coincides with the left interfattee numerical dissipation coefficient
Qg2 of the interior difference equation is no smaller than the standard Roe schiare
a slowly right-going shock wave with_u= 0 will not stick to the interface in the form
of a two-shocked steady state even though the interpolation is defined by nonconserv:
normal interpolations.

Proof. With the definition (29), the basic condition of two-shocked solution (14) can &
rewritten as

1, — _ _ _
> (|C1/2| + |-1/2A(17)2|-I/12 - C:1/2> (WL — V1) = s(Wr — WL)

or equivalently
(’X1/2’ + A(l% - X1/2) El_/lz(WL V1) = ZSEI/lz(WR - Wo). (31)

Now we want to prove that (31) does not hold. [(ﬁf) be the element dff/lz in row mand

in columnn. Let w™ be themth component ofWg — W, andv™ be themth component
of W — V;. It suffices to prove that (31) does not hold for one component. Consider t
third component for which (31) takes the following form

(373 (3
KOOI V™ = 28l w™, (32)

wherea® is the third element of| A1/2| + A{%) — A12). By assumption thaQy is no
smaller than the standard Roe scheme at the moment of shock/interface interaction, we

1@ > 0. (33)



SHOCK/INTERFACE TRANSMISSION 593

By (15), we have

~(31) _ 1 _2
I =—Up——({( —-1Du
1/2 / 2312 1/2

32 1 _
I(1/2) =1+=—(W—-Duy
a1/2

(33 1
) — —— (y = 1.
12 = a2 14

Thusl_S? > 0 and
s <0, gy <O0. (34)
If the shock gets stuck at the left interface, thénlies at the middle oiV. andWr or
goes oveiMVy (in case of numerical oscillation), so that

sgn(v™) = —sgn(w™) Vne {12 3}. (35)

According to the asymptotic behavior (22)—(24f> andw® have the same sign and
are bounded from zero, whike® vanishes at the spedd[s] for s — 0. Thus for a very
slow shock withs — 0 buts # 0, (32) reduces to

By the inequalities (25), (26), (33), (34), and (35), we have

s(l’ﬁ?wm +Iw® + O(s)) >0
_ a1 a3 forM > 1
2@ (I_(l/z)v(l) + T 0@ + O(s)) <0

S(l_s;)w(l) + T(lj?w(?’) + O(S)) >0
_ a as for0<M <1
20 (I_(l/z)v(l) +T0® + O(s)) <0

so that the condition (36) does not hold for a right-going shock with ssnall.
Thus the basic condition of two-shocked solution does not hold. This completes
proof. m

Remark 3.4. In Proposition 3 we have required the restriction@ay. just at the moment
that the right-going shock coincides with the left interface. This means that there is
restriction for the numerical viscosity at the points other than the interface point or at 1
time when the shock is not at the interface point.

Remark 3.5. In the limit cases = 0, 1@ could vanish inside the shock so that condition
(36) holds. This is not a contradiction since a steady shock should remain where it is.

3.3. Discussion

The condition stated in Proposition 3 is a sufficient condition and not a hecessary c
Thus in practice a numerical scheme having slightly less numerical dissipation than
standard Roe scheme may also work.
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M

FIG. 6. Ratio (R;) between the jump in total engery and the jump in density in function of the Mach numbe!

The extension of the scalar result to the system of Euler equations in gas dynamics
heavily on the structure of slowly moving shock waves, for which the momentum jun
vanishes with vanishing shock speed and while the jumps in density and in total ene
keep finite values for vanishing shock speed. This allows us to prove that the basic condi
of the two-shocked solution does not hold. But we are actually unable to extend the res
to a general hyperbolic system of conservation laws.

Since the condition stated in Proposition 3 is required only locally at the point
shock/interface interaction, one may construct a local penetrator for schemes not satisf
such a condition. For example, the Lax—Wendroff scheme does not satisfy the dissipa
requirement/\}’fl/2 > 0. To ensure shock interface penetration, one can simply perturb t

Py
!Illlllllllllllllllillll'lllll

b
[$4]
LB BN

'
0|||||||lh|||||||||||||||

1
2 4 6 8 10
X

,
.
H
]

o

FIG. 7. Computed shock at instaht= te. Lax—Wendroff scheme favl = 2, s = 0.05.
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FIG. 8. Computed shock at instaht= tygae Lax—Wendroff scheme favl = 2, s = 0.05.

interface valueQi , by settingQ1 , = |C_1/2| just at the moment of shock passing at the
interface. Such a penetrator is even easier than the penetrator stated in [36].

The restrictioru;. > 0 in Proposition 3 can be removed. In fact, tpr < 0, the inequal-
ities (34) are replaced by

(3D (33
-0 1% <0
4
35
3
. \y ~— e ———-
25 lv“F
zf
pry N
2—
S " h !
© h |
151 !
¥ o
- ] |
1—‘—-“4.
¥ ! !
X ! !
0.5 ] |
: L
0-|||||||||||||||||l|1||1|||
0 2 4 6 8 10

X

FIG.9. Computed shock at instaht= tygy. Lax—Wendroff scheme favl = 2, s = 0.05.
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FIG. 10. Computed shock at instaht= tier. Lax—Wendroff scheme favl = 2, s = 0.1.

From (22) and (24) it can be shown that for vanishing shock speed, we have

w® _ prER— pLEL

— = 1.9167
w® PR — PL g

and the dependence %ﬁ—; ats — 0 for various negative Mach numbers is displayed in
Fig. 6. Thus the third component® dominates the first component?, and the sign of
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FIG. 11. Computed shock at instaht= tyigge. Lax—Wendroff scheme favl = 2, s = 0.1.
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FIG.12. Computed shock at instaht= tg.. Lax—Wendroff scheme favl = 2, s = 0.1.

the left- and right-hand sides of (36) is dominated by the factor within such a way that
one can still prove that (36) does not hold. Still using this property, one can show that
first two components of (31) do not hold.

Modern high resolution schemes equipped with limiters, nonlinear filters, or large al
ficial dissipation should satisfy the sufficient condition stated in Proposition 3. Thus t
overlapping grid treatment using high resolution schemes and nonconservative norma
terpolation works in practice.
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FIG. 13. Computed shock at instabt= te. Lax—Wendroff scheme fov = 2, s = 0.2.
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FIG. 14. Computed shock at instaht= tyigge. Lax—Wendroff scheme fdvl = 2, s = 0.2.

4. NUMERICAL RESULTS

In [36], which is essentially a scalar study, we have already displayed a few num
ical results for the Euler equations in gas dynamics. Here we display further numeri
results for the case of system, by considering more shock speeds and stronger s
waves.
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FIG. 15. Computed shock at instaht= tig,.. Lax—Wendroff scheme favl = 2, s = 0.2.
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FIG. 16. Computed shock at instaht= ter. MUSCL scheme wihout limiter foM = 2, s = 0.1.

We consider four typical schemes: (1) first-order Roe scheme (Roe), (2) first-order
Leer scheme having a numerical viscosity slightly greater than that of the Roe sche
(3) second-order Lax—Wendroff scheme having a numerical viscosity smaller than the |
scheme, and (4) second-order MUSCL scheme (MUSCL) integrated in time by a foul
order Runge—Kutta method. The first three schemes are well documented in [11] and 1
not be repeated here. For the case of the MUSCL scheme, we use the following nume
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FIG. 17. Computed shock at instaht= tyigge. MUSCL scheme wihout limiter foM = 2, s = 0.1.
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FIG. 18. Computed shock at instaht= tig.. MUSCL scheme wihout limiter foM = 2, s = 0.1.

flux for the left subdomain
Fliae=H(wi) + H™ (wry),

wherewp, = w? + %(p(wT - w?._-l) andwyy, = wj,; — %(p.(w?ﬂ —wj). I-.I(?reHJr andH~ .
are characteristic decompositions of the fldxaccording to the positive and negative

.
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FIG. 19. Computed shock at instambt= t.;. The mesh is refined one times. Lax—Wendroff scheme for
M=2s=0.1.
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FIG. 20. Computed shock at instabt= tyiqge. The mesh is refined one times. Lax—Wendroff scheme for
M=2s=01.

eigenvalues of the Jacobian matrix, ands a slope limiter. In the case without limiter,
¢ = 1. Inthe case with limiter, we choose the well-known minmod limiter. The@{x, ,
for the right subdomain can be similarly defined.

The computational domainis splitad; = {x : 0 < x <5}, D, = {x: 3.6 < x < 10}.
There are 40 uniform meshes in each subdomain unless otherwise stated. We outpt
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FIG. 21. Computed shock at instamt= t;g. The mesh is refined one time. Lax—Wendroff scheme for
M=2s=0.1.
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FIG. 22. Computed shock at instant= ter. The mesh is refined two times. Lax-Wendroff scheme for
M=2s=01.

solutions at three instants:= tiet, tmiddie tright, COrresponding to a shock (exact) position
Xx=33<-a —a<x=45<b, andx =7 > b. In all computations we us€FL =
0.80. Using other kinds of decomposition leads to similar results. Only the nonconservat
normal interpolation will be used at the interface. The Berger’s flux interpolation has be
rigorously shown to yield conservative results and will not be reconsidered here.
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FIG. 23. Computed shock at instaht= ty4ge. The mesh is refined two times. Lax—Wendroff scheme for
M=2s=0.1.
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FIG. 24. Computed shock at instaft= t;g,. The mesh is refined two times. Lax-Wendroff scheme for
M=2s=01

Letp. =1, p. =1, andu. = /¥ M, whereM is the Mach number in the left of the
shock wave. Then the right-hand states of the shock are related to the shock bygeed
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FIG. 25. Computed shock at instaht= tr. Roe scheme foM = 2, s = 0.05.
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FIG. 26. Computed shock at instaht= tigae. ROe scheme foM = 2, s = 0.05.

(38)

e 7Dy (M —5)2
R v —Dy(M—s2+2y
_2y(M=-s? y-1

) 39
y+1 y+1 (39)

The initial shock lies ak = 3.16.
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FIG. 27. Computed shock at instaht= tg,,. Roe scheme foM = 2, s = 0.05.
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FIG. 28. Computed shock at instaht= t.n. van Leer scheme favl = 2, s = 0.05.

4.1. Transmission for Weakly Dissipative Schemes

We begin with the Lax—Wendroff scheme which is less dissipative than the Roe sche
The Mach number is fixed to b = 2.

Fors = 0.05, the computed density is displayed in Figs. 7-9. For these figures and
the subsequent figures, the solution is displayed as a solid line in the left subdomain a
dashed line in the right subdomain. We also displayed two vertical, dot-dashed linesto s
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FIG. 29. Computed shock at instaht= tyigqe Van Leer scheme favl = 2, s = 0.05.
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FIG. 30. Computed shock at instant= t.g,.. van Leer scheme favl = 2, s = 0.05.

the two boundaries of the overlap. A& tiet, the numerical shock is in the left of the overlap
(Fig. 7). Att = tmigaie Where the exact shock should liexat= 4.5, the numerical shocks
inside both subdomains do not lie at the same position: Shock R sticks to the left bounc
of the overlap, and Shock L reaches the exact shock positien4.5). At t = t;gn;, the
exact shock lies at = 7, while the numerical solution reaches a nonphysical, two-shocke
steady state. Hence for the Lax—Wendroff scheme, a very slowly moving shock fails
transmit the grid interface and attains a nonphysical, two-shocked steady state.
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FIG. 31. Computed shock at instaht= ter. MUSCL schemes with minmod limiter favl = 2, s = 0.05.
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FIG. 32. Computed shock at instaht= tmigge. MUSCL schemes with minmod limiter favl = 2, s = 0.05.

Fors = 0.1, the computed density is displayed in Figs. 10-12t Attnyigqe Where the
exact shock should lie at= 4.5, we still observe that Shock L and Shock R do not lie at th
same position. But this time Shock R lags a distance with respect to Shock L and does
stick to the interface. At = tignt, the exact shock lies at= 7, while the numerical shock
is near 6.5. Hence for sufficiently high shock speed, the shock can transmit the interf:
but with a strong delay.
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FIG. 33. Computed shock at instaht= t,igy,,. MUSCL schemes with minmod limiter favl = 2, s = 0.05.
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FIG. 34. Computed shock at instaht= t.. van Leer scheme for a weak shock with= 1.1, s = 0.05.

Fors = 0.2, the computed density is displayed in Figs. 13—-1% Attmiqdie, Where the
exact shock should lie at = 4.5, we observe that Shock L and Shock R lie at the sam
position. Att = tign, the numerical shock reaches the position of the exact shock. Hen
for large shock speed, the shock can transmit the interface without delay.

Now consider the MUSCL scheme without limiter. The computed density f010.1 is
displayed in Figs. 16-18. We have shown that for the Lax—Wendroff scheme the shoc
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FIG. 35. Computed shock at instaht= tyqge Van Leer scheme for a week shock with= 1.1, s = 0.05.



SHOCK/INTERFACE TRANSMISSION 609

TT T T T T T T[T Tt rrfrrrr]

o
n
T

Ollllllllllll|||||l||ll||

|
2 4 6 8 10
X

o

FIG. 36. Computed shock at instaht= tg,. van Leer scheme for a week shock with= 1.1, s = 0.05.

able to transmit the interface, though with a delay. But here for the MUSCL scheme
shock fails to transmit by producing a two-shocked solution. Hence we need higher sh
speed for transmission for the MUSCL scheme.

4.2. Error Reduction by Mesh Refinement for Delayed Transmission

Now we want to see whether the conservation error in the case of transmission delay
be made as small as we require by reducing the mesh size. We consider the Lax—Wen
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FIG. 37. Computed shock at instaht= teq. van Leer scheme for a strong shock with= 5, s = 0.05.
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FIG. 38. Computed shock at instaht= tmgqe. Van Leer scheme for a strong shock with= 5, s = 0.05.

scheme forM = 2 ands = 0.1. In this case there is delayed transmission, as shown |
Figs. 10-12.

Now we refine the grid one time, so that there were 80 mesh points in each subdom
The computed density is displayed in Figs. 19-21. We still observe a delay, but the dela
distance is reduced two times.
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FIG. 39. Computed shock at instaht= t.g,.. van Leer scheme for a strong shock with= 5, s = 0.05.
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FIG. 40. Computed pressure at instdnt t;gn. Lax-Wendroff scheme favl = 2, s = 0.05.

Finally we refine the grid two times, so that there were 160 mesh pointsin each subdom
The computed density is displayed in Figs. 22—24. In comparison with Figs. 10-12,
delayed distance is reduced four times.

Hence for delayed transmission, the error of the shock location can be reduced by refi
the mesh as much as we require.
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FIG. 41. Computed velocity at instamt= t.gn. Lax—Wendroff scheme fovl = 2, s = 0.05.
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4.3. Transmission for Strongly Dissipative Schemes

Now we consider the first-order Roe scheme, the van Leer scheme, and the MUS
scheme with limiter. In these cases the scheme is at least as dissipative as the Roe sc
inside the shock. We considé& = 2 ands = 0.05, for which the weakly dissipative
schemes fail to work.

The computed density for the Roe scheme is displayed in Figs. 25-27. We obse
perfect transmission. For the van Leer scheme which is slightly more dissipative tf
the Roe scheme, we still observe perfect transmission as displayed in Figs. 28-30. U
the MUSCL scheme with limiter, the scheme reduced to first-order inside the shock, so'
we also have perfect transmission as displayed in Figs. 31-33.

Hence for schemes no less dissipative than the Roe scheme (inside the shock), no st
state two-shocked solution occurs, no observable transmission delay occurs.

4.4. Transmission with Various Shock Strengths

The shock strength can be definedmg p., which depends on botM ands, as can
be seen from (39). The case with varicsidias already been discussed. Here we var
the Mach number and simply use the van Leer scheme. The shock speed is fixed t
s = 0.05.

First consider a weak shock witM = 1.1. The computed density is displayed in
Figs. 34-36. The shock transmits the interface perfectly, as for the case of a middle stre
shock (Figs. 28—-30).

Now consider a more strong shock with = 5. The computed density is displayed in
Figs. 37—-39. The shock transmits the interface perfectly, independently of its strength.

Hence for strongly dissipative schemes and a fixed shock speed, the transmission
not depend on the strength of the shock.
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FIG. 42. Computed pressure at instdnt tg. van Leer scheme favl = 2, s = 0.05.



SHOCK/INTERFACE TRANSMISSION 613

- - e -

— o - -

LU BLERNE DN SLELILL LA NLEREEY U BLALEUNLE BB BB RN |

0|||||||||||||||||||||||n|

|
2 4 6 8 10
X

)
.
.
.
]

o

FIG. 43. Computed velocity at instamit= t,g,.. van Leer scheme favl = 2, s = 0.05.

4.5. Transmission for Different Parts of the Wave

There are three characteristic speeds for the system of Euler equations. We have
displayed the density in the above numerical tests. One would wonder whether the
ferent characteristic waves have different transmission behaviors. As we have claime
Section 2.2, no part of the wave is preferred. In order to check this claim, we display ot
components of the wave. One can choose to display different components, such as the
ponents for the conservative variable, the characteristic variable, or the primitive varial
Since each set of variables can be obtained from a combination of another set of variabl
is sufficient enough to display one set of variables. Here we choose to display the primi
variables p, p, u).

We useM = 2 ands = 0.05. Since the density has already been displayed, here we or
display the pressure and velocity. Besides, we only display the restilts &iggie-

First we use the Lax—Wendroff scheme for which the shock fails to transmit. The pr
sure and velocity are displayed in Figs. 40 and 41, respectively. Hence as for the der
(Fig. 9), the jumps for both the pressure and the velocity are caught at the interfaces.

Now we use the van Leer scheme for which the shock transmits. The pressure and vel
are displayed in Figs. 42 and 43, respectively. Hence as for the density (Fig. 30), the jul
for both the pressure and the velocity transmit the interfaces.

Hence if the scheme is only weakly dissipative and if the shock is very slow, all the we
components fail to transmit the overlap. If the scheme is sufficiently dissipative, all t
components transmit the interface. This means that no part of the wave is preferred.

5. CONCLUDING REMARKS

Based on the previous scalar study and the present system study, we see that the
mission of a moving shock across a grid interface, which is the direct representatior
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conservation at a finite mesh size, is controlled by one of the following three facto
(a) shock speed of the exact problem, (b) numerical viscosity of the interior differen
equation, and (c) interpolation.

Actually, we observed that if the shock fails to transmit the interface, then a nonphysic
two-shocked steady-state is reached after a long time integration. According to the pre
study, it is sufficient that only one of these three factors dominates if we want to avc
two-shocked solution. This can be understood through an energy point of view:

(1) if the shock speed is large, then its energy is high enough to overcome energy
due to nonconservative interpolation;

(2) ifthe interior difference equation has an enough amount of numerical viscosity, tr
the perturbation caused by the nonconservative interpolation at the interface can be e
damped out;

(3) if the interpolation is conservative, then no energy is lost at the interface.

For a specific overlapping grid treatment, the three factors exist simultaneously so 1
the range for the existence of two-shocked solution is very narrow.

Since the dissipation of the interior difference equations helps transmission, a Navi
Stokes solver would have less trouble than the corresponding Euler solver on overlapj
grids with regard to conservation.
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